By Kerrek SB


2011-01-31 11:44:25 8 Comments

Please take note of the updates at the end of this post.

Update: I have created a public project on GitHub for this library!


I would like to have a single template that once and for all takes care of pretty-printing all STL containers via operator<<. In pseudo code, I'm looking for something like this:

template<container C, class T, String delim = ", ", String open = "[", String close = "]">
std::ostream & operator<<(std::ostream & o, const C<T> & x)
{
    o << open;
    // for (typename C::const_iterator i = x.begin(); i != x.end(); i++) /* Old-school */
    for (auto i = x.begin(); i != x.end(); i++)
    {
        if (i != x.begin()) o << delim;
        o << *i;
    }
    o << close;
    return o;
}

Now I've seen plenty of template magic here on SO that I never thought possible, so I'm wondering if anyone can suggest something that would match all containers C. Maybe something trait-ish that can figure out if something has the necessary iterator?

Many thanks!


Update (and solution)

After raising this problem again on Channel 9, I got a fantastic answer from Sven Groot, which, combined with a bit of SFINAE type traiting, appears to solve the problem in a completely general and nestable fashion. The delimiters may be individually specialised, an example specialization for std::set is included, as well as an example of using custom delimiters.

The helper "wrap_array()" can be used to print raw C arrays. Update: Pairs and tuples are available for printing; default delimiters are round brackets.

The enable-if type trait requires C++0x, but with some modifications it should be possible to make a C++98 version of this. Tuples require variadic templates, hence C++0x.

I have asked Sven to post the solution here so that I can accept it, but in the meantime I'd like to post the code myself for reference. (Update: Sven has now posted his code below, which I made the accepted answer. My own code uses container type traits, which work for me but may cause unexpected behaviour with non-container classes that provide iterators.)

Header (prettyprint.h):

#ifndef H_PRETTY_PRINT
#define H_PRETTY_PRINT


#include <type_traits>
#include <iostream>
#include <utility>
#include <tuple>


namespace std
{
    // Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
    template<typename T, typename TTraits, typename TAllocator> class set;
}

namespace pretty_print
{

    // SFINAE type trait to detect a container based on whether T::const_iterator exists.
    // (Improvement idea: check also if begin()/end() exist.)

    template<typename T>
    struct is_container_helper
    {
    private:
        template<typename C> static char test(typename C::const_iterator*);
        template<typename C> static int  test(...);
    public:
        static const bool value = sizeof(test<T>(0)) == sizeof(char);
    };


    // Basic is_container template; specialize to derive from std::true_type for all desired container types

    template<typename T> struct is_container : public ::std::integral_constant<bool, is_container_helper<T>::value> { };


    // Holds the delimiter values for a specific character type

    template<typename TChar>
    struct delimiters_values
    {
        typedef TChar char_type;
        const TChar * prefix;
        const TChar * delimiter;
        const TChar * postfix;
    };


    // Defines the delimiter values for a specific container and character type

    template<typename T, typename TChar>
    struct delimiters
    {
        typedef delimiters_values<TChar> type;
        static const type values; 
    };


    // Default delimiters

    template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
    template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "[", ", ", "]" };
    template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"[", L", ", L"]" };


    // Delimiters for set

    template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
    template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters< ::std::set<T, TTraits, TAllocator>, char>::values = { "{", ", ", "}" };
    template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };


    // Delimiters for pair (reused for tuple, see below)

    template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
    template<typename T1, typename T2> const delimiters_values<char> delimiters< ::std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
    template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters< ::std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };


    // Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.

    template<typename T, typename TChar = char, typename TCharTraits = ::std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar>>
    struct print_container_helper
    {
        typedef TChar char_type;
        typedef TDelimiters delimiters_type;
        typedef std::basic_ostream<TChar, TCharTraits> & ostream_type;

        print_container_helper(const T & container)
        : _container(container)
        {
        }

        inline void operator()(ostream_type & stream) const
        {
            if (delimiters_type::values.prefix != NULL)
                stream << delimiters_type::values.prefix;

            for (typename T::const_iterator beg = _container.begin(), end = _container.end(), it = beg; it != end; ++it)
            {
                if (it != beg && delimiters_type::values.delimiter != NULL)
                    stream << delimiters_type::values.delimiter;

                stream << *it;
            }

            if (delimiters_type::values.postfix != NULL)
                stream << delimiters_type::values.postfix;
        }

    private:
        const T & _container;
    };


    // Type-erasing helper class for easy use of custom delimiters.
    // Requires TCharTraits = std::char_traits<TChar> and TChar = char or wchar_t, and MyDelims needs to be defined for TChar.
    // Usage: "cout << pretty_print::custom_delims<MyDelims>(x)".

    struct custom_delims_base
    {
        virtual ~custom_delims_base() { }
        virtual ::std::ostream & stream(::std::ostream &) = 0;
        virtual ::std::wostream & stream(::std::wostream &) = 0;
    };

    template <typename T, typename Delims>
    struct custom_delims_wrapper : public custom_delims_base
    {
        custom_delims_wrapper(const T & t) : t(t) { }

        ::std::ostream & stream(::std::ostream & stream)
        {
          return stream << ::pretty_print::print_container_helper<T, char, ::std::char_traits<char>, Delims>(t);
        }
        ::std::wostream & stream(::std::wostream & stream)
        {
          return stream << ::pretty_print::print_container_helper<T, wchar_t, ::std::char_traits<wchar_t>, Delims>(t);
        }

    private:
        const T & t;
    };

    template <typename Delims>
    struct custom_delims
    {
        template <typename Container> custom_delims(const Container & c) : base(new custom_delims_wrapper<Container, Delims>(c)) { }
        ~custom_delims() { delete base; }
        custom_delims_base * base;
    };

} // namespace pretty_print


template <typename TChar, typename TCharTraits, typename Delims>
inline std::basic_ostream<TChar, TCharTraits> & operator<<(std::basic_ostream<TChar, TCharTraits> & stream, const pretty_print::custom_delims<Delims> & p)
{
    return p.base->stream(stream);
}


// Template aliases for char and wchar_t delimiters
// Enable these if you have compiler support
//
// Implement as "template<T, C, A> const sdelims::type sdelims<std::set<T,C,A>>::values = { ... }."

//template<typename T> using pp_sdelims = pretty_print::delimiters<T, char>;
//template<typename T> using pp_wsdelims = pretty_print::delimiters<T, wchar_t>;


namespace std
{
    // Prints a print_container_helper to the specified stream.

    template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream,
                                                          const ::pretty_print::print_container_helper<T, TChar, TCharTraits, TDelimiters> & helper)
    {
        helper(stream);
        return stream;
    }

    // Prints a container to the stream using default delimiters

    template<typename T, typename TChar, typename TCharTraits>
    inline typename enable_if< ::pretty_print::is_container<T>::value, basic_ostream<TChar, TCharTraits>&>::type
    operator<<(basic_ostream<TChar, TCharTraits> & stream, const T & container)
    {
        return stream << ::pretty_print::print_container_helper<T, TChar, TCharTraits>(container);
    }

    // Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
    template<typename T1, typename T2, typename TChar, typename TCharTraits>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const pair<T1, T2> & value)
    {
        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix;

        stream << value.first;

        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter;

        stream << value.second;

        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix;

        return stream;
    }
} // namespace std

// Prints a tuple to the stream using delimiters from delimiters<std::pair<tuple_dummy_t, tuple_dummy_t>>.

namespace pretty_print
{
    struct tuple_dummy_t { }; // Just if you want special delimiters for tuples.

    typedef std::pair<tuple_dummy_t, tuple_dummy_t> tuple_dummy_pair;

    template<typename Tuple, size_t N, typename TChar, typename TCharTraits>
    struct pretty_tuple_helper
    {
        static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value)
        {
            pretty_tuple_helper<Tuple, N - 1, TChar, TCharTraits>::print(stream, value);

            if (delimiters<tuple_dummy_pair, TChar>::values.delimiter != NULL)
                stream << delimiters<tuple_dummy_pair, TChar>::values.delimiter;

            stream << std::get<N - 1>(value);
        }
    };

    template<typename Tuple, typename TChar, typename TCharTraits>
    struct pretty_tuple_helper<Tuple, 1, TChar, TCharTraits>
    {
        static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value) { stream << ::std::get<0>(value); }
    };
} // namespace pretty_print


namespace std
{
    template<typename TChar, typename TCharTraits, typename ...Args>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const tuple<Args...> & value)
    {
        if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix != NULL)
            stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix;

        ::pretty_print::pretty_tuple_helper<const tuple<Args...> &, sizeof...(Args), TChar, TCharTraits>::print(stream, value);

        if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix != NULL)
            stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix;

        return stream;
    }
} // namespace std


// A wrapper for raw C-style arrays. Usage: int arr[] = { 1, 2, 4, 8, 16 };  std::cout << wrap_array(arr) << ...

namespace pretty_print
{
    template <typename T, size_t N>
    struct array_wrapper
    {
        typedef const T * const_iterator;
        typedef T value_type;

        array_wrapper(const T (& a)[N]) : _array(a) { }
        inline const_iterator begin() const { return _array; }
        inline const_iterator end() const { return _array + N; }

    private:
        const T * const _array;
    };
} // namespace pretty_print

template <typename T, size_t N>
inline pretty_print::array_wrapper<T, N> pretty_print_array(const T (& a)[N])
{
    return pretty_print::array_wrapper<T, N>(a);
}


#endif

Usage example:

#include <iostream>
#include <vector>
#include <unordered_map>
#include <map>
#include <set>
#include <array>
#include <tuple>
#include <utility>
#include <string>

#include "prettyprint.h"

// Specialization for a particular container
template<> const pretty_print::delimiters_values<char> pretty_print::delimiters<std::vector<double>, char>::values = { "|| ", " : ", " ||" };

// Custom delimiters for one-off use
struct MyDel { static const delimiters_values<char> values; };
const delimiters_values<char> MyDel::values = { "<", "; ", ">" };

int main(int argc, char * argv[])
{
  std::string cs;
  std::unordered_map<int, std::string> um;
  std::map<int, std::string> om;
  std::set<std::string> ss;
  std::vector<std::string> v;
  std::vector<std::vector<std::string>> vv;
  std::vector<std::pair<int, std::string>> vp;
  std::vector<double> vd;
  v.reserve(argc - 1);
  vv.reserve(argc - 1);
  vp.reserve(argc - 1);
  vd.reserve(argc - 1);

  std::cout << "Printing pairs." << std::endl;

  while (--argc)
  {
    std::string s(argv[argc]);
    std::pair<int, std::string> p(argc, s);

    um[argc] = s;
    om[argc] = s;
    v.push_back(s);
    vv.push_back(v);
    vp.push_back(p);
    vd.push_back(1./double(i));
    ss.insert(s);
    cs += s;

    std::cout << "  " << p << std::endl;
  }

  std::array<char, 5> a{{ 'h', 'e', 'l', 'l', 'o' }};

  std::cout << "Vector: " << v << std::endl
            << "Incremental vector: " << vv << std::endl
            << "Another vector: " << vd << std::endl
            << "Pairs: " << vp << std::endl
            << "Set: " << ss << std::endl
            << "OMap: " << om << std::endl
            << "UMap: " << um << std::endl
            << "String: " << cs << std::endl
            << "Array: " << a << std::endl
  ;

  // Using custom delimiters manually:
  std::cout << pretty_print::print_container_helper<std::vector<std::string>, char, std::char_traits<char>, MyDel>(v) << std::endl;

  // Using custom delimiters with the type-erasing helper class
  std::cout << pretty_print::custom_delims<MyDel>(v) << std::endl;

  // Pairs and tuples and arrays:
  auto a1 = std::make_pair(std::string("Jello"), 9);
  auto a2 = std::make_tuple(1729);
  auto a3 = std::make_tuple("Qrgh", a1, 11);
  auto a4 = std::make_tuple(1729, 2875, std::pair<double, std::string>(1.5, "meow"));
  int arr[] = { 1, 4, 9, 16 };

  std::cout << "C array: " << wrap_array(arr) << std::endl
            << "Pair: " << a1 << std::endl
            << "1-tuple: " << a2 << std::endl
            << "n-tuple: " << a3 << std::endl
            << "n-tuple: " << a4 << std::endl
  ;
}

Further ideas for improvements:

  • Implement output for std::tuple<...> in the same way is we have it for std::pair<S,T>. Update: This is now a separate question on SO! Upupdate: This has now been implemented, thanks to Xeo!
  • Add namespaces so that the helper classes don't bleed into the global namespace. Done
  • Add template aliases (or something similar) to facilitate making custom delimiter classes, or maybe preprocessor macros?

Recent updates:

  • I removed the custom output iterator in favour of a simple for loop in the print function.
  • All implementation details are now in the pretty_print namespace. Only the global stream operators and the pretty_print_array wrapper are in the global namespace.
  • Fixed the namespacing so that operator<< is now correctly in std.

Notes:

  • Removing the output iterator means that there is no way to use std::copy() to get pretty-printing. I might reinstate the pretty iterator if this is a desired feature, but Sven's code below has the implementation.
  • It was a conscious design decision to make the delimiters compile-time constants rather than object constants. That means that you cannot supply delimiters dynamically at runtime, but it also means that there's no unneeded overhead. An object-based delimiter configuration has been proposed by Dennis Zickefoose in a comment to Sven's code below. If desired, this could be implemented as an alternative feature.
  • It is currently not obvious how to customize nested container delimiters.
  • Bear in mind that the purpose of this library is to allow quick container printing facilities that require zero coding on your part. It is not an all-purpose formatting library, but rather a developing tool to alleviate the need to write boiler-plate code for container inspection.

Thank you to everyone who contributed!


Note: If you are looking for a quick way to deploy custom delimiters, here is one way using type erasure. We assume that you have already constructed a delimiter class, say MyDel, like so:

struct MyDel { static const pretty_print::delimiters_values<char> values; };
const pretty_print::delimiters_values<char> MyDel::values = { "<", "; ", ">" };

Now we want to be able to write std::cout << MyPrinter(v) << std::endl; for some container v using those delimiters. MyPrinter will be a type-erasing class, like so:

struct wrapper_base
{
  virtual ~wrapper_base() { }
  virtual std::ostream & stream(std::ostream & o) = 0;
};

template <typename T, typename Delims>
struct wrapper : public wrapper_base
{
  wrapper(const T & t) : t(t) { }
  std::ostream & stream(std::ostream & o)
  {
    return o << pretty_print::print_container_helper<T, char, std::char_traits<char>, Delims>(t);
  }
private:
  const T & t;
};

template <typename Delims>
struct MyPrinter
{
  template <typename Container> MyPrinter(const Container & c) : base(new wrapper<Container, Delims>(c)) { }
  ~MyPrinter() { delete base; }
  wrapper_base * base;
};

template <typename Delims>
std::ostream & operator<<(std::ostream & o, const MyPrinter<Delims> & p) { return p.base->stream(o); }

9 comments

@Jeffrey Faust 2019-06-16 22:35:02

Coming out of one of the first BoostCon (now called CppCon), I and two others worked on a library to do just this. The main sticking point was needing to extend namespace std. That turned out to be a no-go for a boost library.

Unfortunately the links to the code no longer work, but you might find some interesting tidbits in the discussions (at least those that aren't talking about what to name it!)

http://boost.2283326.n4.nabble.com/explore-Library-Proposal-Container-Streaming-td2619544.html

@vitaut 2019-03-20 22:12:05

You can format containers as well as ranges and tuples using the {fmt} library. For example:

#include <vector>
#include <fmt/ranges.h>

int main() {
  auto v = std::vector<int>{1, 2, 3};
  fmt::print("{}", v);
}

prints

{1, 2, 3}

to stdout.

Disclaimer: I'm the author of {fmt}.

@Pixelchemist 2015-09-27 13:09:14

The code proved to be handy on several occasions now and I feel the expense to get into customization as usage is quite low. Thus, I decided to release it under MIT license and provide a GitHub repository where the header and a small example file can be downloaded.

http://djmuw.github.io/prettycc

0. Preface and wording

A 'decoration' in terms of this answer is a set of prefix-string, delimiter-string, and a postfix-string. Where the prefix string is inserted into a stream before and the postfix string after the values of a container (see 2. Target containers). The delimiter string is inserted between the values of the respective container.

Note: Actually, this answer does not address the question to 100% since the decoration is not strictly compiled time constant because runtime checks are required to check whether a custom decoration has been applied to the current stream. Nevertheless, I think it has some decent features.

Note2: May have minor bugs since it is not yet well tested.

1. General idea/usage

Zero additional code required for usage

It is to be kept as easy as

#include <vector>
#include "pretty.h"

int main()
{
  std::cout << std::vector<int>{1,2,3,4,5}; // prints 1, 2, 3, 4, 5
  return 0;
}

Easy customization ...

... with respect to a specific stream object

#include <vector>
#include "pretty.h"

int main()
{
  // set decoration for std::vector<int> for cout object
  std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
  std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
  return 0;
}

or with respect to all streams:

#include <vector>
#include "pretty.h"

// set decoration for std::vector<int> for all ostream objects
PRETTY_DEFAULT_DECORATION(std::vector<int>, "{", ", ", "}")

int main()
{
  std::cout << std::vector<int>{1,2,3,4,5}; // prints {1, 2, 3, 4, 5}
  std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
  std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
  return 0;
}

Rough description

  • The code includes a class template providing a default decoration for any type
  • which can be specialized to change the default decoration for (a) certain type(s) and it is
  • using the private storage provided by ios_base using xalloc/pword in order to save a pointer to a pretty::decor object specifically decorating a certain type on a certain stream.

If no pretty::decor<T> object for this stream has been set up explicitly pretty::defaulted<T, charT, chartraitT>::decoration() is called to obtain the default decoration for the given type. The class pretty::defaulted is to be specialized to customize default decorations.

2. Target objects / containers

Target objects obj for the 'pretty decoration' of this code are objects having either

  • overloads std::begin and std::end defined (includes C-Style arrays),
  • having begin(obj) and end(obj) available via ADL,
  • are of type std::tuple
  • or of type std::pair.

The code includes a trait for identification of classes with range features (begin/end). (There's no check included, whether begin(obj) == end(obj) is a valid expression, though.)

The code provides operator<<s in the global namespace that only apply to classes not having a more specialized version of operator<< available. Therefore, for example std::string is not printed using the operator in this code although having a valid begin/end pair.

3. Utilization and customization

Decorations can be imposed separately for every type (except different tuples) and stream (not stream type!). (I.e. a std::vector<int> can have different decorations for different stream objects.)

A) Default decoration

The default prefix is "" (nothing) as is the default postfix, while the default delimiter is ", " (comma+space).

B) Customized default decoration of a type by specializing the pretty::defaulted class template

The struct defaulted has a static member function decoration() returning a decor object which includes the default values for the given type.

Example using an array:

Customize default array printing:

namespace pretty
{
  template<class T, std::size_t N>
  struct defaulted<T[N]>
  {
    static decor<T[N]> decoration()
    {
      return{ { "(" }, { ":" }, { ")" } };
    }
  };
}

Print an arry array:

float e[5] = { 3.4f, 4.3f, 5.2f, 1.1f, 22.2f };
std::cout << e << '\n'; // prints (3.4:4.3:5.2:1.1:22.2)

Using the PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) macro for char streams

The macro expands to

namespace pretty { 
  template< __VA_ARGS__ >
  struct defaulted< TYPE > {
    static decor< TYPE > decoration() {
      return { PREFIX, DELIM, POSTFIX };
    } 
  }; 
} 

enabling the above partial specialization to be rewritten to

PRETTY_DEFAULT_DECORATION(T[N], "", ";", "", class T, std::size_t N)

or inserting a full specialization like

PRETTY_DEFAULT_DECORATION(std::vector<int>, "(", ", ", ")")

Another macro for wchar_t streams is included: PRETTY_DEFAULT_WDECORATION.

C) Impose decoration on streams

The function pretty::decoration is used to impose a decoration on a certain stream. There are overloads taking either - one string argument being the delimiter (adopting prefix and postfix from the defaulted class) - or three string arguments assembling the complete decoration

Complete decoration for given type and stream

float e[3] = { 3.4f, 4.3f, 5.2f };
std::stringstream u;
// add { ; } decoration to u
u << pretty::decoration<float[3]>("{", "; ", "}");

// use { ; } decoration
u << e << '\n'; // prints {3.4; 4.3; 5.2}

// uses decoration returned by defaulted<float[3]>::decoration()
std::cout << e; // prints 3.4, 4.3, 5.2

Customization of delimiter for given stream

PRETTY_DEFAULT_DECORATION(float[3], "{{{", ",", "}}}")

std::stringstream v;
v << e; // prints {{{3.4,4.3,5.2}}}

v << pretty::decoration<float[3]>(":");
v << e; // prints {{{3.4:4.3:5.2}}}

v << pretty::decoration<float[3]>("((", "=", "))");
v << e; // prints ((3.4=4.3=5.2))

4. Special handling of std::tuple

Instead of allowing a specialization for every possible tuple type, this code applies any decoration available for std::tuple<void*> to all kind of std::tuple<...>s.

5. Remove custom decoration from the stream

To go back to the defaulted decoration for a given type use pretty::clear function template on the stream s.

s << pretty::clear<std::vector<int>>();

5. Further examples

Printing "matrix-like" with newline delimiter

std::vector<std::vector<int>> m{ {1,2,3}, {4,5,6}, {7,8,9} };
std::cout << pretty::decoration<std::vector<std::vector<int>>>("\n");
std::cout << m;

Prints

1, 2, 3
4, 5, 6
7, 8, 9

See it on ideone/KKUebZ

6. Code

#ifndef pretty_print_0x57547_sa4884X_0_1_h_guard_
#define pretty_print_0x57547_sa4884X_0_1_h_guard_

#include <string>
#include <iostream>
#include <type_traits>
#include <iterator>
#include <utility>

#define PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
    namespace pretty { template< __VA_ARGS__ >\
    struct defaulted< TYPE > {\
    static decor< TYPE > decoration(){\
      return { PREFIX, DELIM, POSTFIX };\
    } /*decoration*/ }; /*defaulted*/} /*pretty*/

#define PRETTY_DEFAULT_WDECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
    namespace pretty { template< __VA_ARGS__ >\
    struct defaulted< TYPE, wchar_t, std::char_traits<wchar_t> > {\
    static decor< TYPE, wchar_t, std::char_traits<wchar_t> > decoration(){\
      return { PREFIX, DELIM, POSTFIX };\
    } /*decoration*/ }; /*defaulted*/} /*pretty*/

namespace pretty
{

  namespace detail
  {
    // drag in begin and end overloads
    using std::begin;
    using std::end;
    // helper template
    template <int I> using _ol = std::integral_constant<int, I>*;
    // SFINAE check whether T is a range with begin/end
    template<class T>
    class is_range
    {
      // helper function declarations using expression sfinae
      template <class U, _ol<0> = nullptr>
      static std::false_type b(...);
      template <class U, _ol<1> = nullptr>
      static auto b(U &v) -> decltype(begin(v), std::true_type());
      template <class U, _ol<0> = nullptr>
      static std::false_type e(...);
      template <class U, _ol<1> = nullptr>
      static auto e(U &v) -> decltype(end(v), std::true_type());
      // return types
      using b_return = decltype(b<T>(std::declval<T&>()));
      using e_return = decltype(e<T>(std::declval<T&>()));
    public:
      static const bool value = b_return::value && e_return::value;
    };
  }

  // holder class for data
  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  struct decor
  {
    static const int xindex;
    std::basic_string<CharT, TraitT> prefix, delimiter, postfix;
    decor(std::basic_string<CharT, TraitT> const & pre = "",
      std::basic_string<CharT, TraitT> const & delim = "",
      std::basic_string<CharT, TraitT> const & post = "")
      : prefix(pre), delimiter(delim), postfix(post) {}
  };

  template<class T, class charT, class traits>
  int const decor<T, charT, traits>::xindex = std::ios_base::xalloc();

  namespace detail
  {

    template<class T, class CharT, class TraitT>
    void manage_decor(std::ios_base::event evt, std::ios_base &s, int const idx)
    {
      using deco_type = decor<T, CharT, TraitT>;
      if (evt == std::ios_base::erase_event)
      { // erase deco
        void const * const p = s.pword(idx);
        if (p)
        {
          delete static_cast<deco_type const * const>(p);
          s.pword(idx) = nullptr;
        }
      }
      else if (evt == std::ios_base::copyfmt_event)
      { // copy deco
        void const * const p = s.pword(idx);
        if (p)
        {
          auto np = new deco_type{ *static_cast<deco_type const * const>(p) };
          s.pword(idx) = static_cast<void*>(np);
        }
      }
    }

    template<class T> struct clearer {};

    template<class T, class CharT, class TraitT>
    std::basic_ostream<CharT, TraitT>& operator<< (
      std::basic_ostream<CharT, TraitT> &s, clearer<T> const &)
    {
      using deco_type = decor<T, CharT, TraitT>;
      void const * const p = s.pword(deco_type::xindex);
      if (p)
      { // delete if set
        delete static_cast<deco_type const *>(p);
        s.pword(deco_type::xindex) = nullptr;
      }
      return s;
    }

    template <class CharT> 
    struct default_data { static const CharT * decor[3]; };
    template <> 
    const char * default_data<char>::decor[3] = { "", ", ", "" };
    template <> 
    const wchar_t * default_data<wchar_t>::decor[3] = { L"", L", ", L"" };

  }

  // Clear decoration for T
  template<class T>
  detail::clearer<T> clear() { return{}; }
  template<class T, class CharT, class TraitT>
  void clear(std::basic_ostream<CharT, TraitT> &s) { s << detail::clearer<T>{}; }

  // impose decoration on ostream
  template<class T, class CharT, class TraitT>
  std::basic_ostream<CharT, TraitT>& operator<<(
    std::basic_ostream<CharT, TraitT> &s, decor<T, CharT, TraitT> && h)
  {
    using deco_type = decor<T, CharT, TraitT>;
    void const * const p = s.pword(deco_type::xindex);
    // delete if already set
    if (p) delete static_cast<deco_type const *>(p);
    s.pword(deco_type::xindex) = static_cast<void *>(new deco_type{ std::move(h) });
    // check whether we alread have a callback registered
    if (s.iword(deco_type::xindex) == 0)
    { // if this is not the case register callback and set iword
      s.register_callback(detail::manage_decor<T, CharT, TraitT>, deco_type::xindex);
      s.iword(deco_type::xindex) = 1;
    }
    return s;
  }

  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  struct defaulted
  {
    static inline decor<T, CharT, TraitT> decoration()
    {
      return{ detail::default_data<CharT>::decor[0],
        detail::default_data<CharT>::decor[1],
        detail::default_data<CharT>::decor[2] };
    }
  };

  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  decor<T, CharT, TraitT> decoration(
    std::basic_string<CharT, TraitT> const & prefix,
    std::basic_string<CharT, TraitT> const & delimiter,
    std::basic_string<CharT, TraitT> const & postfix)
  {
    return{ prefix, delimiter, postfix };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(
      std::basic_string<CharT, TraitT> const & delimiter)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ defaulted<T, CharT, TraitT>::decoration().prefix,
      delimiter, defaulted<T, CharT, TraitT>::decoration().postfix };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(CharT const * const prefix,
      CharT const * const delimiter, CharT const * const postfix)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ str_type{ prefix }, str_type{ delimiter }, str_type{ postfix } };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(CharT const * const delimiter)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ defaulted<T, CharT, TraitT>::decoration().prefix,
      str_type{ delimiter }, defaulted<T, CharT, TraitT>::decoration().postfix };
  }

  template<typename T, std::size_t N, std::size_t L>
  struct tuple
  {
    template<class CharT, class TraitT>
    static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
      std::basic_string<CharT, TraitT> const &delimiter)
    {
      s << std::get<N>(value) << delimiter;
      tuple<T, N + 1, L>::print(s, value, delimiter);
    }
  };

  template<typename T, std::size_t N>
  struct tuple<T, N, N>
  {
    template<class CharT, class TraitT>
    static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
      std::basic_string<CharT, TraitT> const &) {
      s << std::get<N>(value);
    }
  };

}

template<class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::tuple<> const & v)
{
  using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}

template<class CharT, class TraitT, class ... T>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::tuple<T...> const & v)
{
  using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
  using pretty_tuple = pretty::tuple<std::tuple<T...>, 0U, sizeof...(T)-1U>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  pretty_tuple::print(s, v, d ? d->delimiter : 
    defaulted_type::decoration().delimiter);
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}

template<class T, class U, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::pair<T, U> const & v)
{
  using deco_type = pretty::decor<std::pair<T, U>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::pair<T, U>, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  s << v.first;
  s << (d ? d->delimiter : defaulted_type::decoration().delimiter);
  s << v.second;
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}


template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
  typename std::enable_if < pretty::detail::is_range<T>::value,
  std::basic_ostream < CharT, TraitT >> ::type & operator<< (
    std::basic_ostream<CharT, TraitT> &s, T const & v)
{
  bool first(true);
  using deco_type = pretty::decor<T, CharT, TraitT>;
  using default_type = pretty::defaulted<T, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto d = static_cast<pretty::decor<T, CharT, TraitT> const * const>(p);
  s << (d ? d->prefix : default_type::decoration().prefix);
  for (auto const & e : v)
  { // v is range thus range based for works
    if (!first) s << (d ? d->delimiter : default_type::decoration().delimiter);
    s << e;
    first = false;
  }
  s << (d ? d->postfix : default_type::decoration().postfix);
  return s;
}

#endif // pretty_print_0x57547_sa4884X_0_1_h_guard_

@Yakk - Adam Nevraumont 2014-11-25 03:02:24

The goal here is to use ADL to do customization of how we pretty print.

You pass in a formatter tag, and override 4 functions (before, after, between and descend) in the tag's namespace. This changes how the formatter prints 'adornments' when iterating over containers.

A default formatter that does {(a->b),(c->d)} for maps, (a,b,c) for tupleoids, "hello" for strings, [x,y,z] for everything else included.

It should "just work" with 3rd party iterable types (and treat them like "everything else").

If you want custom adornments for your 3rd party iterables, simply create your own tag. It will take a bit of work to handle map descent (you need to overload pretty_print_descend( your_tag to return pretty_print::decorator::map_magic_tag<your_tag>). Maybe there is a cleaner way to do this, not sure.

A little library to detect iterability, and tuple-ness:

namespace details {
  using std::begin; using std::end;
  template<class T, class=void>
  struct is_iterable_test:std::false_type{};
  template<class T>
  struct is_iterable_test<T,
    decltype((void)(
      (void)(begin(std::declval<T>())==end(std::declval<T>()))
      , ((void)(std::next(begin(std::declval<T>()))))
      , ((void)(*begin(std::declval<T>())))
      , 1
    ))
  >:std::true_type{};
  template<class T>struct is_tupleoid:std::false_type{};
  template<class...Ts>struct is_tupleoid<std::tuple<Ts...>>:std::true_type{};
  template<class...Ts>struct is_tupleoid<std::pair<Ts...>>:std::true_type{};
  // template<class T, size_t N>struct is_tupleoid<std::array<T,N>>:std::true_type{}; // complete, but problematic
}
template<class T>struct is_iterable:details::is_iterable_test<std::decay_t<T>>{};
template<class T, std::size_t N>struct is_iterable<T(&)[N]>:std::true_type{}; // bypass decay
template<class T>struct is_tupleoid:details::is_tupleoid<std::decay_t<T>>{};

template<class T>struct is_visitable:std::integral_constant<bool, is_iterable<T>{}||is_tupleoid<T>{}> {};

A library that lets us visit the contents of an iterable or tuple type object:

template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_first(C&& c, F&& f) {
  using std::begin; using std::end;
  auto&& b = begin(c);
  auto&& e = end(c);
  if (b==e)
      return;
  std::forward<F>(f)(*b);
}
template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_all_but_first(C&& c, F&& f) {
  using std::begin; using std::end;
  auto it = begin(c);
  auto&& e = end(c);
  if (it==e)
      return;
  it = std::next(it);
  for( ; it!=e; it = std::next(it) ) {
    f(*it);
  }
}

namespace details {
  template<class Tup, class F>
  void visit_first( std::index_sequence<>, Tup&&, F&& ) {}
  template<size_t... Is, class Tup, class F>
  void visit_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
    std::forward<F>(f)( std::get<0>( std::forward<Tup>(tup) ) );
  }
  template<class Tup, class F>
  void visit_all_but_first( std::index_sequence<>, Tup&&, F&& ) {}
  template<size_t... Is,class Tup, class F>
  void visit_all_but_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
    int unused[] = {0,((void)(
      f( std::get<Is>(std::forward<Tup>(tup)) )
    ),0)...};
    (void)(unused);
  }
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_first(Tup&& tup, F&& f) {
  details::visit_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_all_but_first(Tup&& tup, F&& f) {
  details::visit_all_but_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}

A pretty printing library:

namespace pretty_print {
  namespace decorator {
    struct default_tag {};
    template<class Old>
    struct map_magic_tag:Old {}; // magic for maps

    // Maps get {}s. Write trait `is_associative` to generalize:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
      s << CharT('{');
    }

    template<class CharT, class Traits, class...Xs >
    void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
      s << CharT('}');
    }

    // tuples and pairs get ():
    template<class CharT, class Traits, class Tup >
    std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
      s << CharT('(');
    }

    template<class CharT, class Traits, class Tup >
    std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
      s << CharT(')');
    }

    // strings with the same character type get ""s:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
      s << CharT('"');
    }
    template<class CharT, class Traits, class...Xs >
    void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
      s << CharT('"');
    }
    // and pack the characters together:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_between( default_tag, std::basic_ostream<CharT, Traits>&, std::basic_string<CharT, Xs...> const& ) {}

    // map magic. When iterating over the contents of a map, use the map_magic_tag:
    template<class...Xs>
    map_magic_tag<default_tag> pretty_print_descend( default_tag, std::map<Xs...> const& ) {
      return {};
    }
    template<class old_tag, class C>
    old_tag pretty_print_descend( map_magic_tag<old_tag>, C const& ) {
      return {};
    }

    // When printing a pair immediately within a map, use -> as a separator:
    template<class old_tag, class CharT, class Traits, class...Xs >
    void pretty_print_between( map_magic_tag<old_tag>, std::basic_ostream<CharT, Traits>& s, std::pair<Xs...> const& ) {
      s << CharT('-') << CharT('>');
    }
  }

  // default behavior:
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_before( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT('[');
  }
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_after( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT(']');
  }
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_between( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT(',');
  }
  template<class Tag, class Container>
  Tag&& pretty_print_descend( Tag&& tag, Container const& ) {
    return std::forward<Tag>(tag);
  }

  // print things by default by using <<:
  template<class Tag=decorator::default_tag, class Scalar, class CharT, class Traits>
  std::enable_if_t<!is_visitable<Scalar>{}> print( std::basic_ostream<CharT, Traits>& os, Scalar&& scalar, Tag&&=Tag{} ) {
    os << std::forward<Scalar>(scalar);
  }
  // for anything visitable (see above), use the pretty print algorithm:
  template<class Tag=decorator::default_tag, class C, class CharT, class Traits>
  std::enable_if_t<is_visitable<C>{}> print( std::basic_ostream<CharT, Traits>& os, C&& c, Tag&& tag=Tag{} ) {
    pretty_print_before( std::forward<Tag>(tag), os, std::forward<C>(c) );
    visit_first( c, [&](auto&& elem) {
      print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
    });
    visit_all_but_first( c, [&](auto&& elem) {
      pretty_print_between( std::forward<Tag>(tag), os, std::forward<C>(c) );
      print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
    });
    pretty_print_after( std::forward<Tag>(tag), os, std::forward<C>(c) );
  }
}

Test code:

int main() {
  std::vector<int> x = {1,2,3};

  pretty_print::print( std::cout, x );
  std::cout << "\n";

  std::map< std::string, int > m;
  m["hello"] = 3;
  m["world"] = 42;

  pretty_print::print( std::cout, m );
  std::cout << "\n";
}

live example

This does use C++14 features (some _t aliases, and auto&& lambdas), but none are essential.

@Yakk - Adam Nevraumont 2014-11-25 15:39:22

@KerrekSB working version, with some changes. The bulk of the code is general "visit tuples/iterables", and fancy formatting (including -> within the pairs of maps) at this point. The core of the pretty print library is nice and small, which is nice. I tried to make it easily extendible, not sure if I succeeded.

@CashCow 2013-02-13 17:55:59

I am going to add another answer here, because I have come up with a different approach to my previous one, and that is to use locale facets.

The basics are here

Essentially what you do is:

  1. Create a class that derives from std::locale::facet. The slight downside is that you will need a compilation unit somewhere to hold its id. Let's call it MyPrettyVectorPrinter. You'd probably give it a better name, and also create ones for pair and map.
  2. In your stream function, you check std::has_facet< MyPrettyVectorPrinter >
  3. If that returns true, extract it with std::use_facet< MyPrettyVectorPrinter >( os.getloc() )
  4. Your facet objects will have values for the delimiters and you can read them. If the facet isn't found, your print function (operator<<) provides default ones. Note you can do the same thing for reading a vector.

I like this method because you can use a default print whilst still being able to use a custom override.

The downsides are needing a library for your facet if used in multiple projects (so can't just be headers-only) and also the fact that you need to beware about the expense of creating a new locale object.

I have written this as a new solution rather than modify my other one because I believe both approaches can be correct and you take your pick.

@Kerrek SB 2013-02-14 16:23:35

Let me get this straight: With this approach, do I need to actively whitelist each container type that I want to use?

@CashCow 2013-02-19 11:14:39

Well really one should not extend std other than for ones own types, but you write an overload of operator<< for each container type (vector, map, list, deque) plus pair that you want to be able to print. Of course some may share a facet (e.g. you might wish to print list, vector and deque all the same). You provide a "default" print method but allow users to create a facet and locale and imbue before printing. A bit like the way boost prints their date_time. One can also load their facet onto the global locale to print that way by default.

@Leonid Volnitsky 2011-06-19 09:38:44

My solution is simple.h, which is part of scc package. All std containers, maps, sets, c-arrays are printable.

@Kerrek SB 2011-06-19 11:02:44

Interesting. I like the template-of-template approach for containers, but does it work for custom containers and STL containers with non-standard predicates or allocators? (I did something similar for an attempt to implement a bimap in C++0x using variadic templates.) Also, you don't seem to use iterators generically for your printing routines; why the explicit use of a counter i?

@Leonid Volnitsky 2011-06-26 12:36:03

What is container with non-standard predicates? Custom container which match signature will be printed. Non standard allocaters are not supported right now, but it is easy to fix. I just don't need this for now.

@Leonid Volnitsky 2011-06-26 14:23:26

There is not good reason to use index instead of iterators. Historical reasons. Will fix it when I will have time.

@Kerrek SB 2011-06-26 19:08:27

By "container with non-standard predicates" I mean something like a std::set with a custom comparator, or an unordered_map with a custom equality. It'd be very important to support those constructions.

@Sven 2011-06-05 04:07:35

This solution was inspired by Marcelo's solution, with a few changes:

#include <iostream>
#include <iterator>
#include <type_traits>
#include <vector>
#include <algorithm>

// This works similar to ostream_iterator, but doesn't print a delimiter after the final item
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar> >
class pretty_ostream_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void>
{
public:
    typedef TChar char_type;
    typedef TCharTraits traits_type;
    typedef std::basic_ostream<TChar, TCharTraits> ostream_type;

    pretty_ostream_iterator(ostream_type &stream, const char_type *delim = NULL)
        : _stream(&stream), _delim(delim), _insertDelim(false)
    {
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator=(const T &value)
    {
        if( _delim != NULL )
        {
            // Don't insert a delimiter if this is the first time the function is called
            if( _insertDelim )
                (*_stream) << _delim;
            else
                _insertDelim = true;
        }
        (*_stream) << value;
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator*()
    {
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator++()
    {
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator++(int)
    {
        return *this;
    }
private:
    ostream_type *_stream;
    const char_type *_delim;
    bool _insertDelim;
};

#if _MSC_VER >= 1400

// Declare pretty_ostream_iterator as checked
template<typename T, typename TChar, typename TCharTraits>
struct std::_Is_checked_helper<pretty_ostream_iterator<T, TChar, TCharTraits> > : public std::tr1::true_type
{
};

#endif // _MSC_VER >= 1400

namespace std
{
    // Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
    // These aren't necessary if you do actually include the headers.
    template<typename T, typename TAllocator> class vector;
    template<typename T, typename TAllocator> class list;
    template<typename T, typename TTraits, typename TAllocator> class set;
    template<typename TKey, typename TValue, typename TTraits, typename TAllocator> class map;
}

// Basic is_container template; specialize to derive from std::true_type for all desired container types
template<typename T> struct is_container : public std::false_type { };

// Mark vector as a container
template<typename T, typename TAllocator> struct is_container<std::vector<T, TAllocator> > : public std::true_type { };

// Mark list as a container
template<typename T, typename TAllocator> struct is_container<std::list<T, TAllocator> > : public std::true_type { };

// Mark set as a container
template<typename T, typename TTraits, typename TAllocator> struct is_container<std::set<T, TTraits, TAllocator> > : public std::true_type { };

// Mark map as a container
template<typename TKey, typename TValue, typename TTraits, typename TAllocator> struct is_container<std::map<TKey, TValue, TTraits, TAllocator> > : public std::true_type { };

// Holds the delimiter values for a specific character type
template<typename TChar>
struct delimiters_values
{
    typedef TChar char_type;
    const TChar *prefix;
    const TChar *delimiter;
    const TChar *postfix;
};

// Defines the delimiter values for a specific container and character type
template<typename T, typename TChar>
struct delimiters
{
    static const delimiters_values<TChar> values; 
};

// Default delimiters
template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "{ ", ", ", " }" };
template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"{ ", L", ", L" }" };

// Delimiters for set
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters<std::set<T, TTraits, TAllocator>, char>::values = { "[ ", ", ", " ]" };
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters<std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"[ ", L", ", L" ]" };

// Delimiters for pair
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template<typename T1, typename T2> const delimiters_values<char> delimiters<std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters<std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };

// Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar> >
struct print_container_helper
{
    typedef TChar char_type;
    typedef TDelimiters delimiters_type;
    typedef std::basic_ostream<TChar, TCharTraits>& ostream_type;

    print_container_helper(const T &container)
        : _container(&container)
    {
    }

    void operator()(ostream_type &stream) const
    {
        if( delimiters_type::values.prefix != NULL )
            stream << delimiters_type::values.prefix;
        std::copy(_container->begin(), _container->end(), pretty_ostream_iterator<typename T::value_type, TChar, TCharTraits>(stream, delimiters_type::values.delimiter));
        if( delimiters_type::values.postfix != NULL )
            stream << delimiters_type::values.postfix;
    }
private:
    const T *_container;
};

// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const print_container_helper<T, TChar, TDelimiters> &helper)
{
    helper(stream);
    return stream;
}

// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
typename std::enable_if<is_container<T>::value, std::basic_ostream<TChar, TCharTraits>&>::type
    operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const T &container)
{
    stream << print_container_helper<T, TChar, TCharTraits>(container);
    return stream;
}

// Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
template<typename T1, typename T2, typename TChar, typename TCharTraits>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const std::pair<T1, T2> &value)
{
    if( delimiters<std::pair<T1, T2>, TChar>::values.prefix != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.prefix;

    stream << value.first;

    if( delimiters<std::pair<T1, T2>, TChar>::values.delimiter != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.delimiter;

    stream << value.second;

    if( delimiters<std::pair<T1, T2>, TChar>::values.postfix != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.postfix;
    return stream;    
}

// Used by the sample below to generate some values
struct fibonacci
{
    fibonacci() : f1(0), f2(1) { }
    int operator()()
    {
        int r = f1 + f2;
        f1 = f2;
        f2 = r;
        return f1;
    }
private:
    int f1;
    int f2;
};

int main()
{
    std::vector<int> v;
    std::generate_n(std::back_inserter(v), 10, fibonacci());

    std::cout << v << std::endl;

    // Example of using pretty_ostream_iterator directly
    std::generate_n(pretty_ostream_iterator<int>(std::cout, ";"), 20, fibonacci());
    std::cout << std::endl;
}

Like Marcelo's version, it uses an is_container type trait that must be specialized for all containers that are to be supported. It may be possible to use a trait to check for value_type, const_iterator, begin()/end(), but I'm not sure I'd recommend that since it might match things that match those criteria but aren't actually containers, like std::basic_string. Also like Marcelo's version, it uses templates that can be specialized to specify the delimiters to use.

The major difference is that I've built my version around a pretty_ostream_iterator, which works similar to the std::ostream_iterator but doesn't print a delimiter after the last item. Formatting the containers is done by the print_container_helper, which can be used directly to print containers without an is_container trait, or to specify a different delimiters type.

I've also defined is_container and delimiters so it will work for containers with non-standard predicates or allocators, and for both char and wchar_t. The operator<< function itself is also defined to work with both char and wchar_t streams.

Finally, I've used std::enable_if, which is available as part of C++0x, and works in Visual C++ 2010 and g++ 4.3 (needs the -std=c++0x flag) and later. This way there is no dependency on Boost.

@Dennis Zickefoose 2011-06-05 19:00:25

If I'm reading this right, in order to have a pair print as <i, j> in one function and as [i j] in another, you have to define a whole new type, with a handful of static members in order to pass that type to print_container_helper? That seems overly complex. Why not go with an actual object, with fields you can set on a case by case basis, and the specializations simply providing different default values?

@Kerrek SB 2011-06-05 20:54:19

See it this way: If there are a bunch of delimiters that you like personally, you can make a couple of classes with static members once and for all and then just use those. Of course you're right that using print_container_helper isn't as elegant as just the operator<<. You can always change the source, of course, or just add explicit specializations for your favourite container, e.g. for pair<int, int> and for pair<double, string>. Ultimately it's a matter of weighing power against convenience. Suggestions for improvement welcome!

@Kerrek SB 2011-06-05 20:57:28

... and to follow up on that, if you already need situational printing of the same data type in different formattings, you'll probably have to write at least one small wrapper anyway. This isn't a highly-configurable formatting library, but rather a zero-effort sensible-default library that magically lets you print containers without thinking... (But if you want more global flexibility, we could probably add some #macros to make the defaults easy to manipulate.)

@Sven 2011-06-06 06:02:26

The real issue is that, although I could easily modify print_container_helper to use parameters for the custom delimiters, there's not really any way to specify delimiters for an inner container (or pair) other than specializing the delimiters template. Achieving that would be very complicated.

@Kerrek SB 2011-06-06 14:59:49

I'm almost managing to achieve a convenient custom delimiter solution using type erasure. If you already have a delimiter class MyDels, then I can say std::cout << CustomPrinter<MyDels>(x);. What I cannot do at the moment is say std::cout << CustomDelims<"{", ":", "}">(x);, because you cannot have const char * template arguments. The decision to make the delimiters compile-time constant puts some restrictions on the ease of use there, but I think it's well worth it.

@Kerrek SB 2011-06-06 15:11:36

(But of course you're right that it's not so easy to nest custom delimiters. I think simply specializing the desired types should be sufficiently easy in that scenario, and again, if you need super-customized printing, you'll probably write your own loops anyway. This is just a convenience library for quick inspection.)

@Dennis Zickefoose 2011-06-06 17:30:46

The delimiter interface I was visualizing involved a templated factory class that provides defaults. Users specialize the factory however they like. The helper function takes an actual delimiter object with a default parameter that just queries that factory. Then, you can write a basic manipulator to provide a custom set of delimiters. So you end up with cout << v; or cout << delims("(", "-", ")") << v; or cout << pretty_container_helper(v, delims("(", "-", ")");. This way, the delimiter object itself does not have to be a template, and everything remains relatively simple.

@Dennis Zickefoose 2011-06-06 19:11:55

@Kerrek: ideone.com/aTHOQ <-- An example of what I mean. Based on the code in this answer, not the one in the question. So no namespaces et cetera. I haven't implemented a manipulator, because properly implementing manipulators is overly complicated for something I hacked together as a proof of concept.

@Kerrek SB 2011-06-07 12:18:26

@Dennis: Thanks for the code. As far as I can tell, what you do is make the delimiters object-scope constants rather than compile-time (i.e. class-static) constants, is that right? So the difference is that users could provide the delimiters at runtime. But the problem of controlling nested output remains, i.e. I can't thoroughly customize the printing of a nested container on a case-by-case basis. (I can add your object-based delimiters to the code if you like, though. But check my top post for the latest version.)

@Dennis Zickefoose 2011-06-07 14:57:54

@Kerrek: I already have utility functions I use for this task, so don't change your code on my account. If you don't like the design then that's your call :-)

@BaCh 2017-05-04 16:04:35

It turned out that the accepted answer did not compile for me using gcc5.3 in a few corner cases. E.g., in a namespace with two unrelated structs but having operator<<() of their own led to errors. HOWEVER, the code from the public GitHub now linked at the beginning of this question worked flawlessly. Please bump this comment to eventually save others hours of their life trying to find the cause of the error in the accepted answer.

@CashCow 2011-01-31 12:12:18

This has been edited a few times, and we have decided to call the main class that wraps a collection RangePrinter

This should work automatically with any collection once you have written the one-time operator<< overload, except that you will need a special one for maps to print the pair, and may want to customise the delimiter there.

You could also have a special "print" function to use on the item instead of just outputting it direct. A bit like STL algorithms allow you to pass in custom predicates. With map you would use it this way, with a custom printer for the std::pair.

Your "default" printer would just output it to the stream.

Ok, let's work on a custom printer. I will change my outer class to RangePrinter. So we have 2 iterators and some delimiters but have not customised how to print the actual items.

struct DefaultPrinter
{
   template< typename T >
   std::ostream & operator()( std::ostream& os, const T& t ) const
   {
     return os << t;
   }

   // overload for std::pair
   template< typename K, typename V >
   std::ostream & operator()( std::ostream & os, std::pair<K,V> const& p)
   {
      return os << p.first << '=' << p.second;
   }
};

// some prototypes
template< typename FwdIter, typename Printer > class RangePrinter;

template< typename FwdIter, typename Printer > 
  std::ostream & operator<<( std::ostream &, 
        RangePrinter<FwdIter, Printer> const& );

template< typename FwdIter, typename Printer=DefaultPrinter >
class RangePrinter
{
    FwdIter begin;
    FwdIter end;
    std::string delim;
    std::string open;
    std::string close;
    Printer printer;

    friend std::ostream& operator<< <>( std::ostream&, 
         RangePrinter<FwdIter,Printer> const& );

public:
    RangePrinter( FwdIter b, FwdIter e, Printer p,
         std::string const& d, std::string const & o, std::string const& c )
      : begin( b ), end( e ), printer( p ), open( o ), close( c )
    {
    } 

     // with no "printer" variable
    RangePrinter( FwdIter b, FwdIter e,
         std::string const& d, std::string const & o, std::string const& c )
      : begin( b ), end( e ), open( o ), close( c )
    {
    } 

};


template<typename FwdIter, typename Printer>
std::ostream& operator<<( std::ostream& os, 
          RangePrinter<FwdIter, Printer> const& range )
{
    const Printer & printer = range.printer;

    os << range.open;
    FwdIter begin = range.begin, end = range.end;

    // print the first item
    if (begin == end) 
    { 
      return os << range.close; 
    }

    printer( os, *begin );

    // print the rest with delim as a prefix
    for( ++begin; begin != end; ++begin )
    {
       os << range.delim;
       printer( os, *begin );
    }
    return os << range.close;
}

Now by default it will work for maps as long as the key and value types are both printable and you can put in your own special item printer for when they are not (as you can with any other type), or if you do not want = as the delimiter.

I am moving the free-function to create these to the end now:

A free-function (iterator version) would look like something this and you could even have defaults:

template<typename Collection>
RangePrinter<typename Collection::const_iterator> rangePrinter
    ( const Collection& coll, const char * delim=",", 
       const char * open="[", const char * close="]")
{
   return RangePrinter< typename Collection::const_iterator >
     ( coll.begin(), coll.end(), delim, open, close );
}

You could then use it for std::set by

 std::cout << outputFormatter( mySet );

You can also write free-function version that take a custom printer and ones that take two iterators. In any case they will resolve the template parameters for you, and you will be able to pass them through as temporaries.

@Kerrek SB 2011-01-31 12:15:29

I see. This is similar to Marcelo Cantos's idea, isn't it? I shall try to turn this into a working example, thank you!

@Björn Pollex 2011-01-31 12:46:05

I find this solution much cleaner than Marcelo's, and it offers the same flexibility. I like the aspect that one has to explicitly wrap the output into a function call. To be really cool, you could add support for outputting a range of iterators directly, so that I can do std::cout << outputFormatter(beginOfRange, endOfRange);.

@Matthieu M. 2011-01-31 13:03:41

@CashCow: there is one issue with this solution, it does not seem to work with recursive collections (ie collections of collections). std::pair is the most basic example of "inner collection".

@Kerrek SB 2011-01-31 13:14:44

I'm liking this answer very much, since it has no dependencies and does not need to know about the containers it supports. Can we figure out if it can handle std::maps easily, and if it works for collections of collections? I'm tempted to accept this one as an answer, though. I hope Marcelo doesn't mind, his solution also works.

@CashCow 2011-01-31 13:15:46

@Matthieu M. It depends how you print the inner collection. If you just use os << open << *iter << close then you will have a problem with it, but if you allow your user to pass in a custom printer as I have suggested you can then print anything you like.

@Kerrek SB 2011-01-31 13:20:06

Oh - can we wrap this all up into one single universal printer function? For primitive types it just does "<<", and for collections it calls itself recursively on the elements?

@CashCow 2011-01-31 13:39:22

I have started you off on your custom printer. Of course you can use functions to create item printers. You could add partial specialization too on vector but then you'd have to go on the path of specializing each one separately. Must be better to have a collection printer for that, and you can even overload operator() on RangePrinter to fit the type of being an inner printer.

@CashCow 2011-01-31 13:44:48

@Kerrek. If Marcelo and I were pair-programming we'd probably come up with the perfect solution here. You would use a traits type to do that. boost may have something better though than Marcelo's IsContainer though that will look at the traits of the type to see if it acts as a container.

@CashCow 2011-01-31 14:29:48

@Matthieu I saw at least one of your corrections. And yes, it's a more specialist overload, but has the effect that it if you pass in a std::pair it is a closer match so the compiler will pick it over the general one, so a bit like partial-specialisation.

@CashCow 2011-01-31 16:20:15

If you want something totally recursive you will most likely need to adopt the printer and use clever SFINAE traits techniques (if the item has begin() and end() methods it is a collection... if it's a shared pointer print what it points to... etc.) and this assumes you want to use the same delimiters/openers/closers at each level, and you will need to decide how to key-value too. If there is a big interest in attempting this we could make it a community wiki? How nested exactly are your collections?

@Kerrek SB 2011-01-31 17:43:39

Here's my sample program which fails to compile: pastebin.com/Vx6hAWuL I suppose in real life you wouldn't usually have more than a vector of vectors or so, so maybe that kind of nesting isn't as important as support for vectors of pairs and support for maps.

@CashCow 2011-01-31 21:52:50

You have made a few modifications and I do not know offhand what does not compile. I will test it tomorrow. I am not sure if the first template declaration requires the default parameter too. Where exactly is it failing to compile? What error do you see?

@Kerrek SB 2011-02-01 09:41:36

I am so sorry, I foobar'd that when I updated my local code with your new version. You're right, now it's working better. I've updated the example: pastebin.com/ewMHBMnB Still got some issues with vector<vector<...>>, though...

@Kerrek SB 2011-02-01 10:00:41

After noticing that the RangePrinter worked suprisingly for std::strings, I added support for arrays, too, like Marcelo did: pastebin.com/ZhBc0XhR This lets you say std::cout << outputFormatter("Hello World") << std::endl;

@Kerrek SB 2011-02-01 10:16:08

One more question: To specialise the delimiters, say for std::set, do I have to rewrite the entire definition of RangePrinter? Can this be avoided somehow?

@CashCow 2011-02-01 11:45:53

The problem is my Printer has one interface and RangePrinter a different one. RangePrinter is an object intended to print a single range, and you specify how you print what is inside. We probably want CollectionPrinter which has operator() and uses RangePrinter underneath.

@CashCow 2011-02-01 11:59:40

I see the issue: we should decouple the delimiter spec and what is getting printed, i.e. what it is a collection of. It would then be possible when you have vector< vector<T> > to pass the delimiter spec to each item of the outer vector for printing the inner vectors.

@CashCow 2011-02-01 12:22:21

This would be quite a big re-edit, but I see it now as follows: Delims should be a struct on its own with the 3 strings. We need a printer functor (RangeItemPrinter) that takes the delims as a parameter and keeps state knowing whether it is printing the first object, and we need another class to actually print the items (independent of them being in a range), that being Printer=DefaultPrinter here. RangePrinter is just a wrapper for all these classes and gets streamed with operator<<. You can create a Printer for objects to print the internals of vector< vector > from existing classes.

@Marcelo Cantos 2011-01-31 11:51:51

Here is a working library, presented as a complete working program, that I just hacked together:

#include <set>
#include <vector>
#include <iostream>

#include <boost/utility/enable_if.hpp>

// Default delimiters
template <class C> struct Delims { static const char *delim[3]; };
template <class C> const char *Delims<C>::delim[3]={"[", ", ", "]"};
// Special delimiters for sets.                                                                                                             
template <typename T> struct Delims< std::set<T> > { static const char *delim[3]; };
template <typename T> const char *Delims< std::set<T> >::delim[3]={"{", ", ", "}"};

template <class C> struct IsContainer { enum { value = false }; };
template <typename T> struct IsContainer< std::vector<T> > { enum { value = true }; };
template <typename T> struct IsContainer< std::set<T>    > { enum { value = true }; };

template <class C>
typename boost::enable_if<IsContainer<C>, std::ostream&>::type
operator<<(std::ostream & o, const C & x)
{
  o << Delims<C>::delim[0];
  for (typename C::const_iterator i = x.begin(); i != x.end(); ++i)
    {
      if (i != x.begin()) o << Delims<C>::delim[1];
      o << *i;
    }
  o << Delims<C>::delim[2];
  return o;
}

template <typename T> struct IsChar { enum { value = false }; };
template <> struct IsChar<char> { enum { value = true }; };

template <typename T, int N>
typename boost::disable_if<IsChar<T>, std::ostream&>::type
operator<<(std::ostream & o, const T (&x)[N])
{
  o << "[";
  for (int i = 0; i != N; ++i)
    {
      if (i) o << ",";
      o << x[i];
    }
  o << "]";
  return o;
}

int main()
{
  std::vector<int> i;
  i.push_back(23);
  i.push_back(34);

  std::set<std::string> j;
  j.insert("hello");
  j.insert("world");

  double k[] = { 1.1, 2.2, M_PI, -1.0/123.0 };

  std::cout << i << "\n" << j << "\n" << k << "\n";
}

It currently only works with vector and set, but can be made to work with most containers, just by expanding on the IsContainer specializations. I haven't thought much about whether this code is minimal, but I can't immediately think of anything I could strip out as redundant.

EDIT: Just for kicks, I included a version that handles arrays. I had to exclude char arrays to avoid further ambiguities; it might still get into trouble with wchar_t[].

@Nawaz 2011-01-31 11:55:26

@Marcelo: Would this work with std::map? I think, no!

@Marcelo Cantos 2011-01-31 11:56:32

@Nawaz: As I said, this is just the beginning of a solution. You could support std::map<> either by specialising the operator, or by defining an operator<< for std::pair<>.

@Nawaz 2011-01-31 11:57:50

However, +1 for using Delims class template!

@Kerrek SB 2011-01-31 12:05:32

@MC: Oh good. This is looking very promising! (By the way, you need return type "std::ostream &", I had forgotten that initially.)

@Kerrek SB 2011-01-31 12:13:37

Hmm, I get "ambiguous overload" when trying this on an std::vector<int> and std::set<std::string>...

@Marcelo Cantos 2011-01-31 12:17:38

Yep, I'm currently figuring out how to prevent the ambiguities, which are caused by the fact that the operator<< template matches just about anything.

@Marcelo Cantos 2011-01-31 12:38:35

Phew, that was an ordeal! I tossed in the towel on figuring out SFINAE (it beats me every time, dammit) and just used boost::enable_if, which hides all the SFINAE goo behind a simple template.

@Kerrek SB 2011-01-31 12:51:04

Alright, that works -- so, what are the requirements? Boost/utility.hpp, and each admissible container has to be added to the IsContainer specialisations? Well, it's certainly a neat solution that can be packaged into a single file somewhere. Thank you!

@Marcelo Cantos 2011-01-31 13:20:13

I've just added code to handle T[N]. I could probably merge the two operators into one, but that might actually increase the total code size for precious little gain.

Related Questions

Sponsored Content

22 Answered Questions

[SOLVED] What is the "-->" operator in C++?

37 Answered Questions

25 Answered Questions

[SOLVED] How can I pretty-print JSON using JavaScript?

16 Answered Questions

[SOLVED] How can I profile C++ code running on Linux?

  • 2008-12-17 20:29:24
  • Gabriel Isenberg
  • 490833 View
  • 1729 Score
  • 16 Answer
  • Tags:   c++ unix profiling

13 Answered Questions

[SOLVED] What is the effect of extern "C" in C++?

54 Answered Questions

[SOLVED] How can I pretty-print JSON in a shell script?

21 Answered Questions

[SOLVED] Pretty printing XML in Python

1 Answered Questions

[SOLVED] The Definitive C++ Book Guide and List

  • 2008-12-23 05:23:56
  • grepsedawk
  • 2239292 View
  • 4246 Score
  • 1 Answer
  • Tags:   c++ c++-faq

22 Answered Questions

[SOLVED] Pretty-Printing JSON with PHP

  • 2011-05-19 05:08:29
  • Zach Rattner
  • 478762 View
  • 549 Score
  • 22 Answer
  • Tags:   php json pretty-print

Sponsored Content